
Quality Assurance Report ENPLAN LIDAR SURVEY CAMPAIGN

January 2006

-SANBORN-

EXECUTIVE SUMMARY

In the summer of 2004, Sanborn was contracted by ENPLAN to execute a LIDAR (Light Detection and Ranging) survey campaign covering portions of Shasta, Tehama, and Siskiyou counties in California. LIDAR data in the form of three-dimensional positions of a dense set of masspoints was collected for the areas given by the project specifications. The masspoint data was used in the development of digital elevation models (DEMs) delivered for first return, last return, and bare earth datasets.

The LIDAR operation was designed to provide a ground surface dataset with a vertical accuracy of 0.15m (0.5') at 1 sigma. This accuracy specification is equal to that of Sanborn's ALTM (Airborne Laser Terrain Mapping) LIDAR system manufactured by Optech and used for this project. In practice, our refined operational procedures and rigorous post-processing yield accuracies that typically exceed this specification.

The system was calibrated by conducting flight passes over a known ground surface before and after each LIDAR mission. During final data processing, the calibration parameters were inserted into post-processing software. Validation testing of the data showed that accuracy goals were exceeded with an average RMS error of 0.070m (0.23') over 28 test runs. These results were commensurate with Enplan's specified accuracy objective for the campaign.

A control network of five airborne GPS (Global Positioning System) base stations was used in this project. The network design was in accordance with the quality assurance specifications set by Sanborn's licensed surveyors, California included, as well as recommendations by Optech. Four base stations were set on National Geodetic Survey (NGS) markers located at or near the airports. Station 701 was set on the NGS monument at the East North-East side of the Benton Airport. Station 702 was set on the NGS monument at Redding Municipal Airport. Point 801 and 803 were set up on the NGS monuments at the Mott and Bidwell Airports respectively. Point 802 was also set up on an NGS monument in the project area. The above stations were tied to three additional CORS stations to create a GPS network at the common datum. The network observations and adjustments were completed on the GRS80 ellipsoid.

The acquired LIDAR data was initially processed to obtain first and last return point data. Return Intensity values were also provided within the first return point data. The last return data was then further filtered to yield a LIDAR surface representing bare earth. All three datasets were subsequently delivered to Enplan.

The contents of this report summarize the methods used to establish the base station network, perform the LIDAR data collection and post-processing, as well as the results of these methods.

Sanborn's Project Team responsible for production consisted of:

Karen Adkins - Project Manager Keith Kirkby - LiDAR Manager/Geodetic Engineer David Sutherland – Geodetic Engineering Technician Doug Novy – Programmer Analyst/LiDAR Processing and QC

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 DURATION AND TIME PERIOD. 1.2 CONTACT. 1.3 PURPOSE OF THE LIDAR ACQUISITION 1.4 PROJECT LOCATION. 1.5 PROJECT SCOPE. 1.6 DATUM ISSUES. 1.6.1 Horizontal Datum 1.6.2 Vertical Datum.	1 1 1 1 2
2. LIDAR CALIBRATION	2
2.1 INTRODUCTION	2 2
3. GEODETIC BASE NETWORK	5
3.1 NETWORK SCOPE	6
4. LIDAR DATA CAPTURE	8
4.1 FIELD WORK AND PROCEDURES	8 9

LIST OF FIGURES

FIGURE 1. CALIBRATION PASS 1.	3
FIGURE 2. CALIBRATION PASS 2.	3
FIGURE 3. RUNWAY CALIBRATION	3
FIGURE 4. RUNWAY CALIBRATION RESULTS	4
FIGURE 5. SURVEY NETWORK DIAGRAM	5

LIST OF TABLES

TABLE 1. SURVEY LOOP CLOSURE SUMMARY	6
TABLE 2. NETWORK ADJUSTMENT CONSTRAINTS	
TABLE 3. LIDAR ACQUISITION PARAMETERS.	8
TABLE 4. RUNWAY VALIDATION RESULTS	10

APPENDIX A - FULLY CONSTRAINED LEAST SQUARES ADJUSTMENT

1. INTRODUCTION

This report contains the technical description of the ENPLAN LIDAR campaign, including system calibration techniques, the establishment of base stations by a differential GPS network survey, collection and post-processing of the LIDAR data, and QA/QC results.

1.1 Duration and Time Period

The LIDAR aircraft arrived on site July 23, 2004 and the LIDAR data collection was accomplished between this date and July 28, 2004. The Benton, Redding, Mott, and Bidwell airports were used as the airfields of operation.

1.2 Contact

Questions regarding the technical aspects of this report should be addressed to:

Sanborn 1935 Jamboree Drive Colorado Springs, CO 80920

Attention:	Karen Adkins (Project Manager)
	James Young (Project Engineer)
Telephone:	1–719-593-0093
FAX:	1–719-528-5093
Email:	alucero@sanborn.com

1.3 Purpose of the LIDAR Acquisition

This LIDAR operation was designed to provide first return, last return, and bare earth datasets for the area of coverage specified by ENPLAN.

1.4 **Project Location**

The project location is defined by a full tile layout of the coverage area which included portions of Shasta, Tehama, and Siskiyou counties.

1.5 Project Scope

The ENPLAN campaign was designed to collect LIDAR derived masspoints at an approximate ground spacing of 1.5 meters or less within the project area. The data was processed to facilitate the generation of an appropriate DEM for topographic mapping and other geospatial representations.

1.6 Datum Issues

Five existing NGS monuments were set to be used as Airborne GPS base stations for this project. In order to obtain accurate horizontal and vertical coordinates for these stations and adjust them to a common datum, a ground control network was surveyed using GPS and tied to 3 CORS stations. A fully constrained adjustment was run on the network defining the horizontal and vertical datums through the published coordinates and heights of NGS monuments.

1.6.1 Horizontal Datum

The horizontal datum associated with the LIDAR data is NAD83 (1992), as realized by the physical control monuments used to constrain the survey control network.

1.6.2 Vertical Datum

The vertical datum associated with the LIDAR data is NAVD88, as realized by the physical benchmarks used to constrain the survey control network.

2. LIDAR CALIBRATION

2.1 Introduction

LIDAR calibrations are performed to determine and therefore eliminate systematic biases that occur within the hardware of the ALTM system. Once the biases are determined they can be modeled out. The systematic biases that are corrected for include scale, roll, and pitch.

The following procedures are intended to eliminate potential mistakes in the field and office work, and are designed to detect inconsistencies. The emphasis is not only on the quality control (QC) aspects, but also on the documentation, i.e., on the quality assurance (QA).

2.2 Standard Calibration Procedures

Sanborn performs two types of calibrations on its LIDAR system. The first is a building calibration. New calibration parameters are computed and compared with previous calibration runs. If there is any change, the new values are updated internally or during the LIDAR post-processing. These values are applied to all data collected with this particular plane/ALTM system configuration.

Second, once final processing calibration parameters are established from the building data, a precisely-surveyed surface is observed with the LIDAR system to check for stability in the system. This is done several times during each mission. An average of the systematic biases is applied on a per mission basis.

2.2.1 Building Calibration

The rooftop of a large, flat, rectangular building was surveyed on the ground using conventional survey methods, and used as the LIDAR calibration target. Several specified passes were flown over the building with the ATLM system set in both scan and profile (fixed scan angle) modes.

Figure 1 shows a typical pass over the center of a building. The purpose of this pass is to identify a systematic bias in the scale of the system.

Figure 2 shows a pass along a distinct edge of a building to verify the roll compensation performed by the INS.

Additionally, a pass is made in profile mode across the middle of the building to compensate for any bias in pitch.

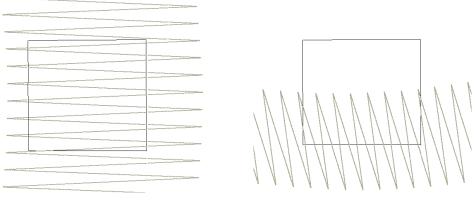


Figure 1. Calibration Pass 1

2.2.2 Runway Calibration and System Performance Validation

For the purpose of the ENPLAN lidar campaign, active asphalt runways were precisely-surveyed at Benton, Redding, Mott, and Bidwell airports using kinematic GPS survey techniques (accuracy: ± 3 cm at 1σ , along each coordinate axis) to establish an accurate digital terrain model of the runway surface. The LIDAR system was then flown at right angles over the runway several times and residuals were generated from the processed data. Figure 3 shows a typical pass over the runway surface.

Approximately 25,000 LIDAR points are observed with each pass. These points are "draped" over the runway surface TIN (Triangular Irregular Network) to compute vertical residuals for every data point. The residuals are then analyzed with respect to the location *along* the runway to identify the level of noise and system biases.

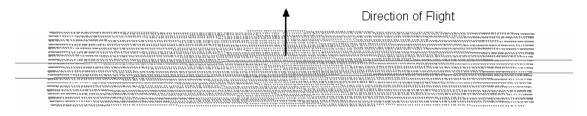
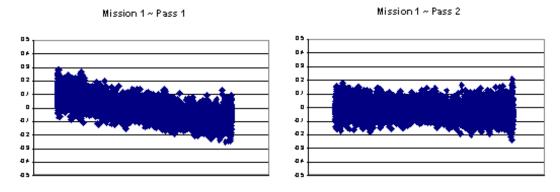
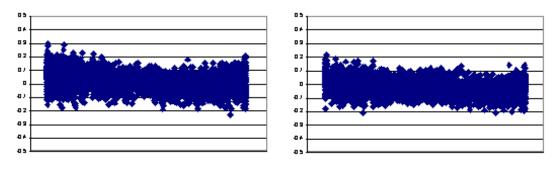
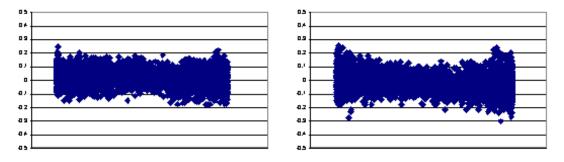



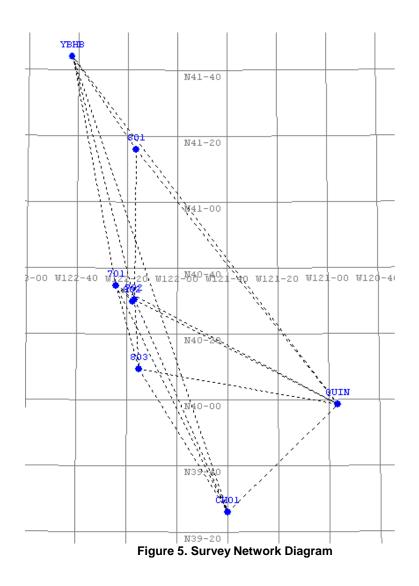
Figure 3. Runway Calibration

The runway over-flights are intended to be a quality check on the calibration and to identify any system irregularities and the overall noise. IMU misalignments and internal system calibration parameters are verified by comparing the collected LIDAR points with the runway surface.


Figure 4 shows the typical results of a runway over-flight analysis. The X-axis represents the position *along* the runway. The overall statistics from this analysis provides evidence of the overall random noise in the data (typically, 7cm standard deviation – an unbiased estimator, and 8cm RMS which includes any

biases) and indicate that the system is performing within specifications. As described in later sections of this report, this analysis will identify any peculiarities within the data along with mirror-angle scale errors (identified as a "smile" or "frown" in the data band) or roll biases.




Figure 4. Runway Calibration Results

3. Geodetic Base Network

3.1 Network Scope

Five existing NGS monuments were used as Airborne GPS base stations. The points were choosen within project boundaries, where a GPS receiver can be set up and left to log data for the duration of the LIDAR flight mission. Three additional CORS stations were involved in network adjustment.

During the LIDAR campaign, the Sanborn field crew conducted a GPS field survey to establish a survey network (Figure 5) containing the GPS base stations used to support the campaign. Point number 701 is an existing NGS monument located at Benton Airport. Point number 702 is an existing NGS monument located at Redding Airport. Also, point numbers 801 and 803 are the existing monuments located at Mott and Bidwell airports respectively. Point 802 is also a NGS monument in the project area that was used as an airborne GPS base station. See Table 2 for station names, orders and constraints.

3.2 Data Processing and Network Adjustment

All static baseline vectors were processed using Trimble Navigation's GPSurvey[™] (Ver. 2.35a) software. Fixed bias solutions were obtained for all baselines. The broadcast ephemeris was used, since the accuracy and extent of the network does not warrant the use of the precise ephemeris.

The loop misclosures are summarized in Table 1 below.

The misclosures in each component (X, Y and Z) are given in millimeters and parts per million (ppm) in an ECEF Cartesian coordinate system. The spatial misclosure in ppm is also provided. All loops comprise of quasi-independent baselines from at least two different sessions. Every station in the network appears at least once in a loop. All loops, in fact, satisfy GPS guidelines for first order work, namely:

- in any component (X, Y, Z), the maximum misclosure does not exceed 250 mm ,
- in any component (X, Y, Z), the maximum misclosure in terms of the loop length does not exceed 12.5 ppm,
- in any component (X, Y, Z), the average misclosure in terms of the loop length does not exceed 8 ppm.

Loop	dX	dY	dZ	Dist.	ppm
	(cm)	(cm)	(cm)	(m)	
701-YBHB-801-802-701	1.5	3.4	1.1	292097	0.40
803-701-802-801-702-803	2.4	4.9	6.6	270121	0.32
803-702-801-QUIN-803	4.6	4.8	0.6	419156	0.16
CHO1-803-QUIN-CHO1	0.9	0.2	0.1	294206	0.03

Table 1. Survey Loop Closure Summary

A 3-dimensional network adjustment was carried out using GeoLab[™] (version 3.61) 3-D adjustment software. The network is displayed in Figure 5.

Initially, a minimally constrained adjustment was performed to examine the internal accuracy of the network. The geodetic latitude, longitude, and elevation of one existing control point were held fixed. The adjustment comprises 8 stations and 33 baseline vector components (11 baselines). *A priori* weights for the observations were based on the (scaled) variance-covariance sub-matrices from the GPSurvey[™] solutions.

The relative confidence regions and the associated relative horizontal and vertical precisions were computed for all pairs of points that were directly connected by vectors. All station pairings with the exception of one (801 to 702)

meet the horizontal positioning standard for *first order* surveys, i.e., the relative horizontal precision between each pair of points does not exceed 10 mm + 10 ppm of their horizontal separation, at the 95 percent level of confidence. The network is therefore classified as *first order* in terms of its *internal* accuracy.

To complete a fully constrained adjustment, the network was horizontally constrained to control points 701, 702, QUIN, YBHB and CHO1 and vertically constrained by orthometric elevation to 901 and 801. See Table 2 for associated orders and assigned standard deviations.

TABLE 2. NETWORK ADJUSTMENT CONSTRAINTS (standard deviations in meters)

Horizontal

Code	NGS Station Name	Order	¢	λ
701	REDDING	1	0.01	0.01
702	REDDING CBL O C	2	0.04	0.04
QUIN	QUINCY CORS L1	A(SPECIAL)	0.04	0.04
YBHB	YREKA CORS L1	A(SPECIAL)	0.04	0.04
CHO1	CHOCO 1 L1	A(SPECIAL)	0.04	0.04

Vertical

Code	NGS Station Name	Order	Ht
801	MOTT AIRPORT	1 — II	0.01
802	P 742	1 — II	0.05
803	T 742	1 — II	0.05
701	FAA GAF B	1 — II	0.05

A full listing of the constrained adjustment is contained in Appendix A. The residuals and the standardized residuals are also listed in Apendix A. One of the 33 vector components were flagged for possible rejection under the τ MAX - test at the 0.05 level of significance. None of the horizontal or vertical constraints were flagged. The slight change in the a posteriori variance factor ($\sigma_o^2 = 1.0434$) from the minimally constrained adjustment indicates that the network is not being unduly distorted by the imposition of the constraints. The absolute and relative confidence regions were not scaled by the a posteriori variance factor. The relative horizontal confidence ellipses appear in last sections of Appendix A. Examination of the relative precision reveals that the network has maintained its high internal accuracy.

4. LIDAR DATA CAPTURE

4.1 Field Work and Procedures

Data capture began July 23 and was completed July 28, 2004. A minimum of two GPS base stations were set up and operated continuously during capture. One receiver was usually set up at the airport of operation while the second GPS receiver was placed at a survey control point in the area of capture.

Pre-flight checks such as cleaning the sensor head glass were performed. A four minute INS initilization is conducted on the ground, with the engines running, prior to flight, to establish fine-alignment of the INS. GPS ambiguities are resolved by flying within ten kilometers of the base stations.

The flight missions were typically four or five hours in duration including runway calibration flights flown at the beginning and the end of each mission. During the data collection, the operator recorded information on logsheets which includes weather conditions, LIDAR operation parameters, and flight line statistics. Near the end of the mission GPS abiguities are again resolved by flying within ten kilometers of the base stations to aid in post-processing.

Table 3 shows the planned LIDAR acquisition parameters with a flying height of 1,200 meters above gound level (agl) on a mission to mission basis.

Average Altitude	1,200 Meters Above Ground Level
Airspeed	~ 140 Knots
Scan Frequency	33 Hertz
Scan Width Half Angle	20 Degrees
Pulse Rate	50000 Hertz

Table 3. LIDAR Acquisition Parameters

Preliminary data processing was performed in the field immediately following the missions for quality control of GPS data and to ensure sufficient overlap between flight lines. Any problematic data could then be reflown immediately as required. Final data processing was completed in the Colorado Springs office.

4.2 Final LIDAR Processing

Final post-processing of LIDAR data involves several steps. The airborne GPS data was post-processed using Waypoint's GravNAV[™] software (version 7.50). A fixed-bias carrier phase solution was computed in both the forward and reverse chronological directions. Whenever practical, LIDAR acquisition was limited to periods when the PDOP was less than 4.0.

The GPS trajectory was combined with the raw IMU data and post-processed using Applanix POSPROC Kalman Filtering software. This generally results in a two-fold improvement in the attitude accuracies over the real-time INS data. The best estimated trajectory (BET) and refined attitude data were then re-introduced into the Optech REALM software to compute the laser point-positions. The trajectory was combined with the attitude data and laser range measurements to produce the 3-dimensional coordinates of the mass points.

First and last return values were produced within REALM software. The first return information provides a useful depiction of the "canopy" within the project area. The last return was further processed to obtain ground-filtered data with a corresponding regular grid DEM.

Laser point filtering was accomplished using TerraScan LIDAR processing and modeling software. The bare earth surface generated by TerraScan was used to produce regular grid DEMs.

4.3 **Problems and Delays**

No major problems or challenges occurred for the duration of the project.

4.4 Daily Runway Performance and Data Validation Tests

Performance flights over the runway test field were performed before and after each mission. Table 4 shows the standard deviation and RMS values of the residuals between the test flights and the known surface of the test ranges for each pass. The maximum RMS value is 0.104 meters and the maximum standard deviation is 0.059 meters. The average RMS among all test flights is 0.070 meters. Figure 4, above, provides a graphical representation of the runway results.

Rigorous quality assurance procedures were followed to ensure that the appropriate data accuracy was achieved.

				()
_	Mission	Pass	Standard Deviation	RMS
	204a	1	0.057	0.060
	204a	2	0.053	0.054
	205a	1	0.046	0.104
	205a	2	0.046	0.083
	205a	3	0.056	0.103
	205a	4	0.050	0.095
	205b	1	0.059	0.097
	205b	2	0.058	0.101
	205b	3	0.055	0.096
	205b	4	0.051	0.094
	207a	1	0.049	0.071
	207a	2	0.049	0.065
	207a	3	0.048	0.049
	207b	1	0.046	0.049
	207b	2	0.044	0.051
	207b	3	0.051	0.052
	207b	4	0.048	0.063
	208a	1	0.043	0.074
	208a	2	0.052	0.067
	208a	3	0.042	0.075
	208a	4	0.043	0.065
	208b	1	0.043	0.054
	208b	2	0.046	0.056
	208b	3	0.046	0.054
	208b	4	0.048	0.055
	209a	1	0.050	0.074
	209a	2	0.047	0.047
	209a	3	0.045	0.061

Table 4. Runway Validation Results (meters)

APPENDIX A

FULLY CONSTRAINED LEAST SQUARES ADJUSTMENT

Apendix A FC adjustment.txt						
	Redding, CA - Full. (Constrained NAD83(199	92)			
GeoLab V3. 65 WGS 84 UNITS: m, DMS Page 0001 14: 11: 18, Tue Oct 05, 2004						
Input file: J:\Redo Output file: J:\Redo Options file: C:\gla	di ng\GeoLab\Reddi ng_(di ng\GeoLab\Reddi ng_(ab32v3\defaul t.cfg	C.iob C.lst				
Geoid File: C:\GEO	D\G2003U05PC.gsp					
PARAME	TERS	OBSERVA	ATI ONS			
Description	Number	Description	Number			
No. of Stations Coord Parameters Free Latitudes Free Longitudes Free Heights Fixed Coordinates Astro. Latitudes Geoid Records All Aux. Pars. Direction Pars. Scale Parameters Constant Pars. Rotation Pars. Translation Pars.	8 24 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Di recti ons Di stances Azi muths Verti cal Angl es Zeni thal Angl es Angl es Hei ghts Hei ght Di fferences Auxi I i ary Params. 2-D Coords. 2-D Coords. 3-D Coords. 3-D Coord. Di ffs.	0 0 0 0 0 0 4 0 0 10 0 0 33			
Total Parameters	24	Total Observations	47			
	Degrees of Freedo	om = 23				
	SUMMARY OF SELEC	CTED OPTIONS				
OPTI ON		SELECTI ON				
Computation Mode Maximum Iterations Convergence Criterion Angular Misclosure Limit Factor Linear Misclosure Limit Factor Confidence Region Criterion Confidence Region Types Relative Confidence Regions Variance Factor (VF) Known Scale Covariance Matrix With VF Scale Residual Variances With VF Force Convergence in Max Iters Distances Contribute To Heights Compute Full Inverse Optimize Band Width Generate Initial Coordinates Re-Transform Obs After 1st Pass Geoid Interpolation MethodAdjustment 5 0.00100 O.00 Tau Max Cond Tau Max Cond Tau Max Connected Only Yes No No No Scale Residual Variances With VF Force Convergence in Max Iters Distances Contribute To Heights Generate Initial Coordinates Re-Transform Obs After 1st Pass Geoid Interpolation MethodAdjustment 5 Out States Adjustment Out States No No No No Yes						

GeoLab V3.65	Redding, CA - Min. Constrained NAD83(1992) WGS 84 UNITS: m,DMS	Page 0002
Input Station Da FFF STATION	ATA: ELIP-LATITUDE ELIP-LONGITUDE ELIP-HEIGHT ASTRO-LATITUDE ASTRO-LONGITUDE ORTHO-HEIGHT N/S DEFLECTION N/S DEFLECTION GEOID-HEIGHT NORTHLNG EASTLNG PROJECTION	
000 701	N 40 34 36.02678 W122 24 17.24782 193.465 N 40 34 36.02678 W122 24 17.24782 218.280 - 0 0 8.37 0 0 0.93 -27.407 4491935.810 550377.025 UTM 10	
000 702	N 40 30 16.00784 W122 17 9.30696 121.290 N 40 30 16.00784 W122 17 9.30696 121.290 - 0 0 6.35 - 0 0 3.56 -27.643 4483993.195 560503.124 UTM 10	
000 801	N 41 15 59. 67819 W122 16 28. 62730 968. 457 N 41 15 59. 67819 W122 16 28. 62730 993. 183 - 0 0 7. 34 0 0 2. 21 -23. 760 4568604. 041 560759. 437 UTM 10	
000 802	N 40 29 54. 42885 W122 17 41. 61083 124. 269 N 40 29 54. 42885 W122 17 41. 61083 149. 340 - 0 0 6. 68 - 0 0 3. 54 -27. 678 4483321. 720 559748. 141 UTM 10	
000 803	N 40 9 20. 03529 W122 15 3. 49135 78. 715 N 40 9 20. 03529 W122 15 3. 49135 78. 715 - 0 0 2. 11 - 0 0 8. 70 -28. 509 4445292. 587 563791. 973 UTM 10	
000 CH01	N 39 25 57. 46627 W121 39 53. 86634 17. 750 N 39 25 57. 46627 W121 39 53. 86634 17. 750 - 0 0 7. 06 - 0 0 2. 75 -28. 187 4365638. 061 614897. 943 UTM 10	
000 QUI N	N 39 58 28. 37874 W120 56 39. 88710 1108. 005 N 39 58 28. 37874 W120 56 39. 88710 1108. 005 - 0 0 1. 08 - 0 0 5. 05 -23. 838 4426955. 919 675536. 059 UTM 10	
000 YBHB	N 41 43 53.97171 W122 42 38.64701 1068.057 N 41 43 53.97171 W122 42 38.64701 1068.057 O 0 1.21 - O 0 0.10 -23.635 4620023.731 524056.612 UTM 10	
	Redding, CA - Min. Constrained NAD83(1992)	
GeoLab V3.65	WGS 84 UNITS: m, DMS	Page 0003
Misclosures (pas NOTE: Observatic TYPE AT	ss 1): on values shown are reduced to mark-to-mark. FROM TO OBSERVATION STD.DEV.	MI SC

TYPE AT	FROM	ТО		OB	SERVATI ON	STD. DEV.	MI SC
ELAT 701 ELON 701 FLAT 702			W122	24	36. 02678 17. 24782 15. 95324	0.0.0	0.000 0.000 1.682
ELON 702		Daga	W122		9. 22334	0.040	-1.971

	Apendix A FC adjustment.txt	
ELAT QUIN	N 39 58 28.37579 0.040	0.090
ELON QUIN	W120 56 39.88402 0.040	-0.075
ELAT YBHB	N 41 43 53.94101 0.040	0.952
ELON YBHB	W122 42 38.59169 0.040	-1.275
ELAT CHO1 ELON CHO1	N 39 25 57.48084 0.040 W121 39 53.80602 0.040	-0. 461 -1. 439
OHGT 801	993. 183 0. 001	-0. 967
OHGT 802	149. 340 0. 050	2.607
OHGT 803	104. 700 0. 050	2.524
OHGT 701	218. 280 0. 050	2. 592
GROUP: 00000041. SSF, obs#:	1 day 210 OPT 210 22	0 000
DXCT 701 DYCT 701	802 4873. 299 0. 013 802 -9707. 191 0. 017	-0.230
DZCT 701	802 -9707. 191 0. 017 802 -6646. 297 0. 011	0. 024 -0. 120
GROUP: 00000021.SSF, obs#:	2 day 211 OPT 211 1	-0.120
DXCT 701	803 -5108.779 0.012	-0.230
DYCT 701	803 -32504.620 0.016	0.024
DZCT 701	803 -35702.799 0.016	-0. 120
GROUP: 00000025.SSF, obs#:	3 day 210 OPT 210 20	0 011
DXCT 702 DYCT 702	802 -874.353 0.002 802 43.440 0.002	-0.811
DZCT 702	802 43.440 0.002 802 -505.392 0.002	-4. 460 1. 188
GROUP: 00000228. SSF, obs#:	4 day 206 OPT 206	1. 100
DXCT 702	803 -10856.437 0.015	-0. 806
DYCT 702	803 -22754.004 0.023	-4.445
DZCT 702	_ 803 29561. 913 _ 0. 020	1. 207
GROUP: 00000236. SSF, obs#:	5 day 210 OPT 210 1	0.010
DXCT 801 DYCT 801	702 -30051.654 0.009 702 -45791.381 0.011	0. 018 1. 488
DZCT 801	702 -64546.605 0.011	0.754
GROUP: 00000220. SSF, obs#:	6 day 204 OPT 204 1	0.754
DXCT 801	QUÍN 46847.647 0.022	-0. 219
DYCT 801	QUIN -138643.169 0.028	-2.323
DZCT 801	QUIN -108829.215 0.028	1.507
GROUP: 00000224. SSF, obs#: DXCT 801	7 day 204 OPT 204 1 YBHB -12369.108 0.015	-1.005
DYCT 801	YBHB 48375.355 0.021	-1.005
DZCT 801	YBHB 38756.693 0.022	2. 182
GROUP: 00000256.SSF, obs#:	8 day 207 OPT 207 2	
DXCT 803	QUĬN 87755.692 0.012	0. 615
DYCT 803	QUIN -70097.834 0.015	0.684
DZCT 803	QUIN -14720.691 0.014 9 day 207 OPT 207 2	-0. 459
GROUP: 00000232.SSF, obs#: DXCT CH01	9 day 207 0PT 207 2 803 -15416.799 0.016	0. 306
DYCT CH01	803 70114.805 0.019	-1.782
DZCT CH01	803 61711. 457 0. 018	1.533
GROUP: 00000244. SSF, obs#:	10 day 208 OPT 208	
DXCT CH01	QUIN 72338.884 0.011	0.929
DYCT CHO1	QUIN 16.973 0.015	-1.100
DZCT CH01 GROUP: 00000240. SSF, obs#:	QUIN46990.7670.01511 day 2100PT21022	1.073
DXCT YBHB	701 -23430. 165 0. 020	0. 408
DYCT YBHB	701 -84416.104 0.028	-1.939
DZCT YBHB	701 -97162.365 0.027	-0.148
	, CA - Min. Constrained NAD83(1992)	
GeoLab V3.65	WGS 84 UNITS: m, DMS F	Page 0004
Adjusted NEO Coordinates:		:=======

Adjusted NEO Coordinates: CODE FFF STATION

NORTHI NG STD DEV Page 3 EASTING STD DEV O-HEIGHT STD DEV MAPPROJ

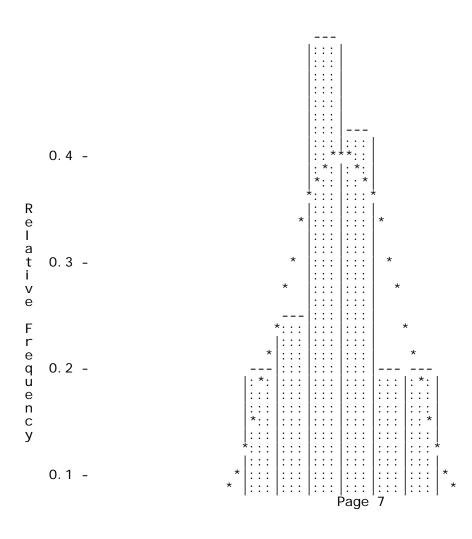
Apendi x	А	FC	adj	ustment.	txt
----------	---	----	-----	----------	-----

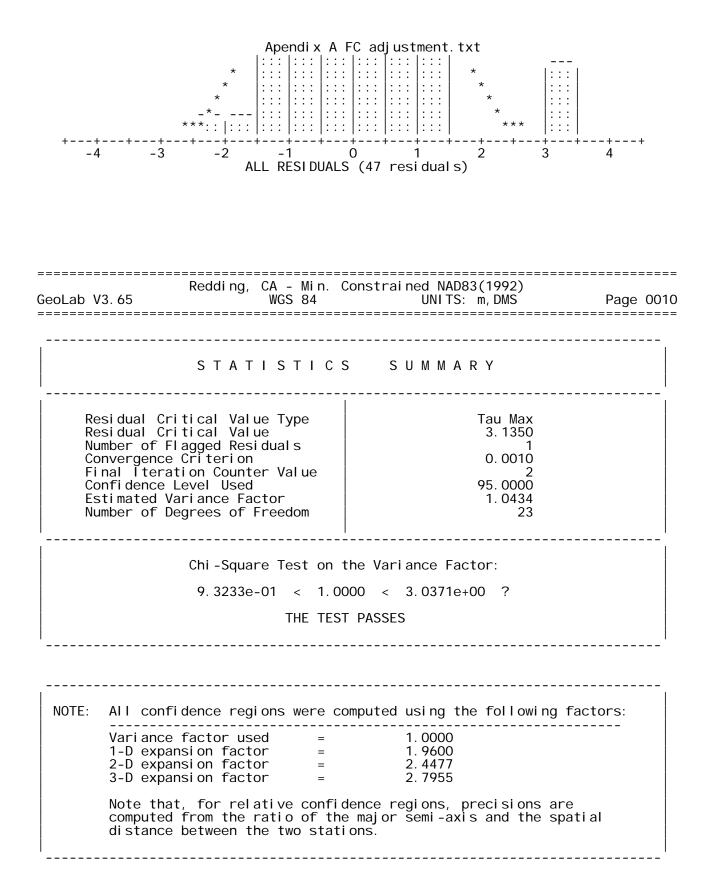
		Apendix A FC a	adjustment.txt	
NEO O	000 701	4491935.815	550377.023	218.333 UTM 10 m
NEO	000 702	0.009	0. 009	0.016
O		4483991.543	560505. 041	150.367 UTM 10 m
NEO	000 801	0. 012	0. 010	0.012
O		4568603. 757	560760. 554	993.183 UTM 10 m
NEO	000 802	0. 012	0. 011	0.001
O		4483321. 880	559748. 347	149.412 UTM 10 m
NEO	000 803	0. 012	0. 010	0.012
O		4445292. 715	563792. 186	104.680 UTM 10 m
NEO	000 CH01	0. 012	0. 010	0.018
O		4365638. 501	614899. 371	45.408 UTM 10 m
NEO	000 QUI N	0. 013	0. 012	0.025
O		4426955. 812	675536. 145	1130.283 UTM 10 m
NEO	000 YBHB	0. 013	0. 012	0.021
O		4620022. 762	524058. 005	1090.119 UTM 10 m
0		0. 013	0. 012	0. 025

=================		=======================================	==========		============	========
GeoLab V3.65	Reddi ng,	CA - Min. Cor WGS 84	nstrai nec l	3 NAD83(199 JNITS: m,DM	2) S 	Page 0005
Adjusted PLH Co	ordi nates:					
CODE FFF STATI	ON	LATI TUDE STD DEV		LONGI TUDE STD DEV	ELI P-HEI GHT STD DEV	
PLH 000 701	N 40) 34 36.02691 0.009	W122 24	17. 24788 0. 009	190. 926 0. 016	
PLH 000 702	N 40		W122 17	9. 22607 0. 010	122. 724 0. 012	
PLH 000 801	N 41	15 59.66868 0.012	W122 16		969. 423 0. 001	m O
PLH 000 802	N 40	29 54.43400 0.012	W122 17	41. 60200 0. 010	121. 734 0. 012	··· •
PLH 000 803	N 40	9 20. 03938 0. 012	W122 15	3. 48232 0. 010	76. 171 0. 018	m C
PLH 000 CH01	N 39	25 57.47985 0.013	W121 39	53. 80633 0. 012	17.220 0.025	m O
PLH 000 QUIN	N 39	58 28.37520 0.013	W120 56	39. 88359 0. 012	1106. 445 0. 021	m O
PLH 000 YBHB	N 41	43 53. 94017 0. 013	W122 42	38. 58686 0. 012	1066. 485 0. 025	m O

GeoLab V3.65	Redding, CA - Min. WGS 84	Constrained NAD83(1992) UNITS: m,DMS	Page 0006
Geoi d Val ues: CODE STATI ON	N/S DEFLECTI	ON E/W DEFLECTION	UNDULATI ON

Apendix A FC adjustment.txt


GEOI	701	-	0	Ö	8.37	0	0	0. 93	-27.407 m
GEOI	702	-	0	0	6.35 -	0	0	3.56	-27.643 m
GEOI	801	-	0	0	7.34	0	0	2. 21	-23.760 m
GEOI	802	-	0	0	6.68 -	0	0	3.54	-27.678 m
GEOI	803	-	0	0	2.11 -	0	0	8.70	-28.509 m
GEOI	CH01	-	0	0	7.06 -	0	0	2.75	-28.187 m
GEOI	QUIN	-	0	0	1.08 -	0	0	5.05	-23.838 m
GEOI	YBHB		0	0	1.21 -	0	0	0. 10	-23.635 m


GeoLab V3. 65	0	CA - Min. WGS 84	Constrai ne	ed NAD83 UNI TS:	(1992) m, DMS		Page 0007
Residuals (critic NOTE: Observation	al value =	3.135):					
TYPE AT	FROM	то		OBSER	VATION	RESI DUAL STD DEV	STD RES PPM
ELAT 701			N 40	34 36	. 02678	0.004	0. 004
ELON 701			W122	2 24 17	0.010	-0.001	-0.001
ELAT 702			N 40	0 30 15	0. 010 . 95324	0. 000 0. 014	0. 373
ELON 702			W122	2 17 9	0.040	0. 038 -0. 062	-1.599
ELAT QUIN			N 30	9 58 28	0.040	0. 039 -0. 002	-0.073
					0.040	0. 028	
ELON QUIN			W120	56 39	0.040	-0. 020 0. 038	-0. 524
ELAT YBHB			N 41	1 43 53	. 94101 0. 040	-0. 058 0. 027	-2.172
ELON YBHB			W122	2 42 38	. 59169	0. 118	3.083
ELAT CH01			N 39	9 25 57	0.040 .48084	0. 038 -0. 020	-0.748
ELON CHO1			W12 ⁻	1 39 53	0. 040	0. 027 -0. 013	-0. 329
OHGT 801				993	0.040	0. 038 0. 000	0.000
OHGT 802					0.001	0.000 0.072	* 1. 490
					0.050	0. 048	
OHGT 803				104	. 70000	-0. 020 0. 047	-0. 440
OHGT 701				218	. 28000	0.053	1. 110
GROUP: 00000041.S	SF. obs#:	1 dav 21	0 0PT		0. 050	0. 047 210 2:	2
DXCT	701	802		4873	. 29940	-0.003	-0. 277
DYCT	701	802		-9707	0. 013 . 19070	0. 011 -0. 002	0. 23 -0. 157
DZCT	701	802		-6646	0.017	0. 013 0. 003	0. 17 0. 518
			1 007	0010	0.011	0.007	0. 27
GROUP: 00000021.S DXCT	SF, obs#: 701	2 day 21 803	1 OPT	-5108	. 77930	211 -0. 002	-0. 198
DYCT	701	803		-32504	0.012	0. 008 -0. 008	
DZCT	701	803			0.016	0. 010	0. 17
	,01	000	Page 5	-33702	. 77750	-0.010	-1.505

	Apendi x A	FC adjus			
GROUP: 00000025. SSF, obs#: DXCT 702	3 day 210 802	0PT	0.016-874.35290	0. 012 210 20 0. 000	0. 33 1. 313
DYCT 702	802		0.002	0.000	0.33
DZCT 702	802		43. 44000 0. 002 -505. 39170	0.000 0.000 0.000	0. 22
		ODT	-305. 39170 0. 002	0.000	0.39
GROUP: 00000228. SSF, obs#: DXCT 702	4 day 206 803	OPT	-10856. 43700 0. 015	206 0.007 0.012	0. 579 0. 18
DYCT 702	803		-22754.00390 0.023		0. 453 0. 23
DZCT 702	803		-29561. 91340 0. 020	0.000 0.000 0.017	-0. 027 0. 01
GROUP: 00000236. SSF, obs#: DXCT 801	702		-30051.65410 0.009	210 1 0.016 0.005	3. 151 0. 19
Reddi ng, GeoLab V3.65	CA - Min. (WGS 84	Constrai	ned NAD83(1992) UNITS: m,DMS		Page 0008
Residuals (critical value =	3.135):				
NOTE: Observation values sho	own are redu	uced to	mark-to-mark. OBSERVATION	RESI DUAL	STD RES
TYPE AT FROM	T0			STD DEV	PPM
DYCT 801	702		-45791. 38090		1. 179
DZCT 801	702		0. 011	0.005	0. 07 -0. 105
		ODT	0. 011	0.005	0.01
GROUP: 00000220. SSF, obs#: DXCT 801	6 day 204 QUIN	0PT	46847.64680 0.022	204 1 -0.021 0.018	-1. 150 0. 12
DYCT 801	QUI N		-138643.16920	-0.028	-1.229
DZCT 801	QUI N		0. 028 -108829. 21530 0. 028	0. 023 0. 005 0. 023	0. 15 0. 204 0. 03
GROUP: 00000224. SSF, obs#: DXCT 801	7 day 204 YBHB	0PT	-12369. 10770	204 1 -0.003	-0. 355
DYCT 801	YBHB		0.015	0.009	0.05 0.524
			0. 021	0. 012	0. 10
DZCT 801	YBHB	0.D.T	38756. 69280 0. 022	-0.008 0.013	-0. 593 0. 12
GROUP: 00000256. SSF, obs#: DXCT 803	8 day 207 QUIN	0PT	87755. 69170 0. 012	207 2 0.002 0.008	0. 297 0. 02
DYCT 803	QUI N		-70097.83420	0.007	0.756
DZCT 803	QUI N		0. 015 -14720. 69120 0. 014	0.009 0.000 0.009	0. 06 -0. 011 0. 00
GROUP: 00000232.SSF, obs#: DXCT CH01	9 day 207 803	OPT	-15416. 79860	207 2 -0.008	-0. 700
DYCT CH01	803		0. 016 70114. 80460	0. 011 -0. 004	0. 08 -0. 295
DZCT CH01	803		0.019 61711.45700	0. 013 0. 002	0. 04 0. 120
GR0UP: 00000244.SSF, obs#:	10 day 208	OPT	0.018	0. 013 208	0.02
DXCT CHO1	QUÍ N		72338. 88420 0. 011	0.003 0.006	0. 598 0. 04
		Page 6	0.011		

		Apendix A	FC adjustment.txt		
DYCT	CH01	QUIN	16. 97270	0. 001	0. 092
			0.015	0.008	0. 01
DZCT	CH01	QUIN	46990.76720	0.000	0. 001
			0.015	0. 008	0.00
GROUP:	00000240. SSF, obs#:	11 day 210	OPT	210 22	
DXCT	YBHB	701	-23430. 16490	-0. 012	-0. 793
			0. 020	0. 015	0.09
DYCT	YBHB	701	-84416. 10430	0.002	0. 097
			0. 028	0. 021	0. 02
DZCT	YBHB	701	-97162.36550	-0. 023	-1.188
			0.027	0. 020	0. 18

		===========		
	Redding,	CA – Min.	Constrained NAD83(1992)	1
GeoLab V3.65	0	WGS 84	UNITS: m, DMS	Page 0009
=======================================		=========	=======================================	

=============		====	=======================================	========
GeoLab V3.65	Redding, CA - Mi WGS 84		onstrained NAD83(1992) UNITS: m,DMS	Page 0011
2-D and 1-D Station STATION	on Confidence Regi MAJOR SEMI-AXIS	ons AZ	(95.000 and 95.000 percent): MINOR SEMI-AXIS	VERTI CAL
701 702 801 802 803 CH01 QUI N YBHB	0. 022 0. 029 0. 030 0. 029 0. 029 0. 032 0. 032 0. 031	 3 5 3 6 1 4 3 0	0. 022 0. 023 0. 027 0. 023 0. 024 0. 029 0. 029 0. 029 0. 029	0. 031 0. 024 0. 002 0. 024 0. 024 0. 036 0. 049 0. 042 0. 050

==================			
GeoLab V3.65	Redding, CA - Min. WGS 84	Constrained NAD83(199 UNITS: m,DM	
3D Station Conf STATION	i dence Regi ons (95.000 MAJ-SEMI (AZ, VANG)	percent): MED-SEMI (AZ,VANG)	MIN-SEMI (AZ, VANG)
701 702 801 802 803 CH01 QUI N YBHB	0.044 (180, 88) 0.034 (185, 56) 0.035 (3, 0) 0.035 (185, 60) 0.051 (223, 88) 0.070 (258, 88) 0.060 (255, 88) 0.071 (216, 89)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		====	=========			
GeoLab V3. 65	Redding, CA - Mi WGS 84		onstraine	ed NAD83(1992 UNITS: m,DMS		Page 0013
2-D and 1-D Relati FROM TO				(95.000 and VERTICAL	95.000 pero DI STANCE	cent): PPM
701702701802701803701CH01701QUI N701YBHB702801702803702CH01702QUI N	$\begin{array}{c} 0.\ 022\\ 0.\ 022\\ 0.\ 022\\ 0.\ 027\\ 0.\ 027\\ 0.\ 025\\ 0.\ 017\\ 0.\ 005\\ 0.\ 014\\ 0.\ 023\\ 0.\ 022\\ \end{array}$	5 5 1 3 1 4 12 8 16 12	0. 010 0. 009 0. 012 0. 021 0. 020 0. 016 0. 003 0. 010 0. 020 0. 020 Page 9	$\begin{array}{c} 0.\ 026\\ 0.\ 026\\ 0.\ 031\\ 0.\ 047\\ 0.\ 040\\ 0.\ 052\\ 0.\ 024\\ 0.\ 006\\ 0.\ 034\\ 0.\ 048\\ 0.\ 041\\ \end{array}$	$\begin{array}{c} 12877.\ 150\\ 12733.\ 885\\ 48552.\ 461\\ 141868.\ 05\\ 141068.\ 44\\ 130826.\ 53\\ 84653.\ 501\\ 1010.\ 842\\ 38852.\ 453\\ 130292.\ 90\\ 128436.\ 39 \end{array}$	$\begin{array}{c} 1.\ 70\\ 1.\ 74\\ 0.\ 45\\ 0.\ 19\\ 0.\ 19\\ 0.\ 21\\ 4.\ 94\\ 0.\ 37\\ 0.\ 17\\ 0.\ 17\\ \end{array}$

Apendix A FC adjustment.txt						
702	YBHB	Ó. 023 179	0.020	0.052	140895.76	0.16
801	QUIN	0.025 7	0.023	0.042	182374.43	0.14
801	YBHB	0.018 170	0.015	0.050	63207.998	0. 28
803	CH01	0.019 49	0. 018	0.037	94668.196	0.20
803	QUIN	0.019 28	0. 018	0.029	113276.06	0.16
CH01	QUIN	0.018 33	0.017	0.034	86261.505	0.20
CH01	YBHB	0.029 1	0.027	0.067	270212.06	0. 11
QUIN	YBHB	0.028 178	0. 026	0.062	245487.60	0. 12

Redding, CA - Min. Constrained NAD83(1992)						
GeoLab V3.65	5		NITS: m, DMS	Page 0014		
	Confidence Reg	ons (95.000 percent): MAJ-SEMI (AZ,VANG) MED-S				
701	702	0.039 (183,70) 0.		1 (275, 1)		
701	802	0.038 (183,68) 0.		3.00 1 (276, 1)		
701	803	0.045 (191,81) 0.	12733. 885 024 (0, 9) 0. 01	3.01 3 (90, 2)		
701	CH01	0.067 (212,86) 0.		0.93 4 (92, 2)		
701	QUIN	0.058 (201,85) 0.		0.47 4 (92,2)		
701	YBHB	0.074 (190,87) 0.		0.41		
702	801	0.034 (203,87) 0.		0.57 9 (90, 1)		
702	802	0.008 (0,90) 0.		0.40 4 (90,0)		
702	803	0.048 (188,85) 0.		8.18 1 (278, 0)		
702	CHO1	0.069 (217,87) 0.	38852. 453 026 (14, 3) 0. 02	1.24 3 (104, <u>1</u>)		
702	QUIN	0.059 (204,87) 0.		0.53 3 (101, 1)		
702	YBHB	0.074 (199,88) 0.		0.46 2 (90, 1)		
801	QUIN	0.060 (226,88) 0.		0.53 7 (90,2)		
801	YBHB	0.071 (234,89) 0.		0.33 7 (80, 1)		
803	CHO1	0.053 (246,87) 0.	63207. 998 021 (46, 3) 0. 02			
803	QUIN	0. 042 (227, 88) 0.	94668. 196 021 (360, 1) 0. 02			
CH01	QUIN	0. 048 (270, 89) 0.	113276.061 020 (0,_0) 0.020			
CH01	YBHB	0.095 (227,88) 0.	86261.505 033 (360, 1) 0.03			
QUIN	YBHB	0.088 (220,88) 0.	270212.062 032 (0, 1) 0.03 245487.595	0.35 0 (90, 1) 0.36		

14:11:18, Tue Oct 05, 2004